秒速赛车_秒速赛车平台【看得到信誉做得到的实力-A爱彩】

秒速赛车_秒速赛车平台【看得到的信誉做得到的实力-A爱彩】

高能量密度锂离子超级电容器研究取得系列进展

时间:2018-08-15 06:23来源:未知 作者:秒速赛车 点击:
通过研究各种碳基超级电容器中电极材料的电位随充放电过程的变化规律,中国科学院金属研究所沈阳材料科学国家(联合)实验室先进炭材料研究部的科研人员发现造成超级电容器低

  通过研究各种碳基超级电容器中电极材料的电位随充放电过程的变化规律,中国科学院金属研究所沈阳材料科学国家(联合)实验室先进炭材料研究部的科研人员发现造成超级电容器低能量密度的根源之一是组装成器件后正、负电极无法在最优的电位窗口下工作,因此能量密度很低。为了解决这一问题,他们提出了采用电化学电荷注入(ECI)来改变电极材料的表面电化学结构,从而调控正、负电极材料的电化学电位到最佳初始电位的方法,如图1a所示。将调控后的正、负电极组装成超级电容器,如图1b, c所示,正负极在充电过程中同时到达电解液可用电位的上下限,极大地提高了超级电容器的工作电压和比容量。由于超级电容器所储存的能量与工作电压和活性材料的容量成正比,因此其能量密度大大增加,如图1d所示。该方法具有普适性,目前已经在多种碳基超级电容器上验证有效。特别是以石墨烯作为活性材料的石墨烯锂离子超级电容器在调控后,不仅保持了超级电容器的高功率特性,而且能量密度超过镍氢电池并接近锂离子电池水平,展现出极大的应用前景。相关研究结果在《应用化学》(Angewandte Chemie International Edition, 2013, 52, 3722-3726)上发表,并被该杂志选为“Hot Paper”。

  2016/2/2 12:06:41 minkehawking

  同时,如何设计实用化的电芯结构来实现上述锂离子超级电容器技术同样至关重要。为此提出了锂离子超级电容器的智能电芯设计思路。在组装锂离子超级电容器的同时,基于该设计开发出一系列智能功能,如图3所示。相比于传统的超级电容器电芯(图3a),智能电芯引入了锂电极和两个电压传感器(图3b)。其智能功能示意图如图3c所示,(1)提升能量密度:锂电极作为电压调节器可在电芯中有效地实现电位调控,获得高能量密度,如图3d所示。(2)安全监控:内置的电压传感器V1和V2实时监控正负极的工作状态,可提高电芯的安全性,如图3e所示,当正极工作电位超过电解液的安全区间,V2即自动报警,器件服役终止,从而可以有效阻止安全隐患的发生。(3)容量自恢复:对于存在安全隐患的电芯,可以通过锂电极电压调节器来有效地实现自修复,如图3f所示,经过自修复的电芯(SLIC-R)可以正常工作和使用。故该技术避免了废旧电芯处理带来的资源和环境问题。相关结果在《能源储存材料》(Energy Storage Materials, 2015, 1, 146-151)上发表。

  20世纪80年代末、90年代初,采用具有石墨结构的碳材料作为嵌锂负极,避免了由于金属锂的使用引起的安全性问题。同时,在这种电池体系中,锂是Li+离子形式存在的;在电池的充放电循环过程中,Li+离子也不断地在正负极间进行嵌入和脱嵌。因此,人们称这种电池为锂离子电池。1980年,美国德州大学的Goodenough教授等人提出钴酸锂(LiCoO2)可以作为锂离子电池的正极材料,随后,1991年日本索尼公司率先推出LixC6/有机电解液体系/Li1-xCoO2锂离子电池且成功地实现商用化。至今,锂离子电池不仅用于各类电子消费产品,同时也运用于电动汽车(图1)和大型军工产品等领域。

  随着电动汽车、清洁能源存储及便携式电子产品的快速发展,开发与之相匹配的兼具高能量、高功率、长寿命的电化学储能器件成为目前的迫切需求。超级电容器又称电化学电容器,是目前最重要的电能储存装置之一,其数秒内的快速充放电、上万次的循环寿命、百分之百的充放电效率及高的安全性是锂离子电池等二次电池所无法比拟的。但低的能量密度限制了超级电容器在消费电子、电动汽车、智能电网、清洁能源等领域的进一步应用。如何在保持超级电容器高功率、长寿命的前提下提高其能量密度是当前亟待解决的问题。

  上一篇:荆州新能源动力水是真的吗下一篇:没有下一篇了相关内容推荐

  特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。

  第一,放电电流不能过大,过大的电流导致电池内部发热,有可能会造成永久性的损害。在手机上,这个倒是没有问题的,可以不考虑。

  如果通俗地讲,全固态电池就是里面没有气体、没有液体,所有材料都以固态形式存在的电池。而考虑到现在人们日常生活中最为常见的电池为锂离子电池,我们在这里将默认把“全固态锂离子电池”当做全固态电池的代表(暂时忽略全固态锂硫等新型电池)。

  广东新能源油合作_科信广东科信新能源油的燃料本身为液态,气化过程在敞开燃烧容器内完成,南京科信新能源油无爆炸、漏气等危险。

  图3 (a)一般超级电容器的结构示意图;(b)智能锂离子超级电容器的结构示意图及实物照片;(c)智能锂离子超级电容器的功能原理示意图;(d, e, f)智能功能: (d)对锂离子超级电容器进行电位优化,以提高能量密度;(e)对锂离子超级电容器进行安全监控;(f)锂离子超级电容器的容量自恢复。

  然而,对于石墨烯锂离子超级电容器而言,伴随着能量密度的大幅提高,随之而来的是其循环使用寿命的下降(1000次循环衰减25%)。通过监控和分析正负极的工作区间发现,正电极和电解液在1.5V-1.0V(vs. Li/Li+)区间持续的副反应导致了低的循环寿命。为了解决这一问题,采用电化学预包覆的方法(PEC)通过二氟草酸硼酸锂(LiODFB)的分解在正电极表面预先包覆一层纳米尺度的保护层,如图2a所示,该保护层具有电子绝缘而离子导通的特性,因而不仅可以隔绝活性材料与电解液的直接接触分解,而且可以保证电极中高的离子扩散和传输。图2b为一般石墨烯锂离子超级电容器和采用PEC处理石墨烯正极的锂离子超级电容器的组装示意图。与一般的石墨烯锂离子超级电容器相比,采用PEC处理石墨烯正极的锂离子超级电容器不仅展现出优异的能量密度和高的功率特性(图2c),而且循环稳定性更佳(每次循环衰减量仅为0.011%),如图2d所示。相关结果被《先进能源材料》(Advanced Energy Materials, 2015, DOI: 10.1002/aenm.201502064)接收发表。

  理论上的进一步深化还有赖于各种高纯度、结构规整的原料及碳材料的制备和更为有效的结构表征方法的建立。日本富士公司开发出了锂离子电池新型锡复合氧化物基负极材料,除此之外,已有的研究主要集中于一些金属氧化物,其质量比能量较碳负极材料大大提高。如SnO2,WO2,MoO2,VO2,TiO2,LixFe2O3,Li4Ti5O12,Li4Mn5O12等[24],但不如碳电极成熟。锂在碳材料中的可逆高储存机理主要有锂分子Li2形成机理、多层锂机理、晶格点阵机理、弹性球-弹性网模型、层-边端-表面储锂机理、纳米级石墨储锂机理、碳-锂-氢机理和微孔储锂机理。石墨,作为碳材料中的一种,早就被发现它能与锂形成石墨嵌入化合物(GraphiteIntercalationCompounds)LiC6,但这些理论还处于发展阶段。负极材料要克服的困难也是一个容量循环衰减的问题,但从文献可知,制备高纯度和规整的微结构碳负极材料是发展的一个方向。

  负极:活性物质(石墨、秒速赛车计划:MCMB、CMS),粘合剂、溶剂、基体。

  负极材料未来以提高容量和循环稳定性为目标,将碳材料与各种高容量非碳负极材料复合以开发高容量、非碳复合负极材料。

  电子产品中的可用空间往往很有限,很多产品(例手机、平板电脑)有近1/3左右的体积和质量已经被电池占据,而且在广大生产厂商和消费者希望对电池进一步提高容量(增加续航)和压缩体积(便携美观和便于设计)的要求下,高压实、体积能量密度最高的钴酸锂(LCO)电池依然是当仁不让的主流产品。

  该应用报告解释了使用MSP430微控制器和BQ76PL536实现的多单元锂离子电池管理系统。电池管理....

  缺点一就是固态电解质电导率总体偏低,低于它们的“前辈”——液态电解液。这就导致了目前全固态电池的倍率性能整体偏低,内阻较大,高倍率放电时压降较大,如果想指望该类技术能在近期解决电池快充的问题,基本上是不可能的。

  图1 (a)电位调控和通过电位调控提高超级电容器能量密度的原理示意图;(b)未调控的石墨烯锂离子超级电容器的电化学特性;(c)调控后的石墨烯锂离子超级电容器的电化学特性;(d)各种碳基锂离子超级电容器的能量密度-功率密度图。

  隔膜是锂离子电池的重要组成部分,是用于隔开正负极极片的微孔膜,是具有纳米级微孔结构的高分子功能材料。....

  图2 (a)电化学预包覆(PEC)方法原理示意图;(b)石墨烯锂离子超级电容器(GLISC)和采用PEC处理石墨烯正极的锂离子超级电容器(A-GLISC)的结构示意图;(c)PEC包覆后的石墨烯锂离子超级电容器的能量密度-功率密度图;(d)PEC包覆后的石墨烯锂离子超级电容器的循环寿命及库伦效率。

  锂离子电池的结构示意图,其中Li+(锂离子)在内电路中,通过电解质(electrolyte)传导

  目前许多纳米材料实用的一大关键障碍就在于比表面积大,体积密度过低,导致如果基于这些材料制成产品,往往相同质量下占据体积过大,即体积能量密度偏低,完全无法满足一般工业品的要求。所以现在的纳米(电池)材料科研中往往选择了不报道这方面的参数,原因不难理解。

  LiNixCoyMn1-x-yO2正极材料的代表LiNi1/3Co1/3Mn1/3O2材料过渡金属层的空间结构有两种模型。图a展示的是基于Woods notation理论的空间模型,过渡金属Ni、Co、Mn三种元素有序的、规则地排列在过渡金属层平面中,形成一个个三角晶格;图b展示的是另外一种模型-piled-up model,在空间结构中,CoO2、NiO2、MnO2有规律的堆积在过渡金属层中。在层状三元正极系列材料LiNixCoyMn1-x-yO2中,Co的化合价为+3价,与LiCoO2材料中Co的电子结构一致。然而,Ni、Mn的化合价分别为+2、+4价,表明其电子结构分别不同于LiNiO2、LiMnO2。LiNixCoyMn1-x-yO2系列三元正极材料的充放电过程,具体以Li1-xNi1/3Co1/3Mn1/3O2材料为例,在0≤x≤1/3范围内,主要是Ni2+/Ni3+电子对的氧化还原反应;在1/3≤x≤2/3范围内,主要是Ni3+/Ni4+电子进行发生氧化还原反应;Co3+/ Co4+电子对在2/3≤x≤1范围内进行氧化还原反应。锰的化合价在整个充放电过程中,不发生变化。通常认为,Mn4+在整个充放电过程中,不参与氧化还原,起到稳定材料结构的作用。

  近年来,先进炭材料研究部在高能量密度超级电容器用碳材料及器件设计方面开展了一系列工作,特别是受邀为《能源储存材料》(Energy Storage Materials)撰写了该领域发展的展望性论文,相关结果受到国内外同行的关注。上述工作得到了国家纳米重大研究计划、国家自然科学基金委及中科院战略先导项目等的大力支持。(来源:中国科学院金属研究所)

(责任编辑:秒速赛车)
织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------